A new algorithm for RNA secondary structure design.
نویسندگان
چکیده
The function of many RNAs depends crucially on their structure. Therefore, the design of RNA molecules with specific structural properties has many potential applications, e.g. in the context of investigating the function of biological RNAs, of creating new ribozymes, or of designing artificial RNA nanostructures. Here, we present a new algorithm for solving the following RNA secondary structure design problem: given a secondary structure, find an RNA sequence (if any) that is predicted to fold to that structure. Unlike the (pseudoknot-free) secondary structure prediction problem, this problem appears to be hard computationally. Our new algorithm, "RNA Secondary Structure Designer (RNA-SSD)", is based on stochastic local search, a prominent general approach for solving hard combinatorial problems. A thorough empirical evaluation on computationally predicted structures of biological sequences and artificially generated RNA structures as well as on empirically modelled structures from the biological literature shows that RNA-SSD substantially out-performs the best known algorithm for this problem, RNAinverse from the Vienna RNA Package. In particular, the new algorithm is able to solve structures, consistently, for which RNAinverse is unable to find solutions. The RNA-SSD software is publically available under the name of RNA Designer at the RNASoft website (www.rnasoft.ca).
منابع مشابه
PreRkTAG: Prediction of RNA Knotted Structures Using Tree Adjoining Grammars
Background: RNA molecules play many important regulatory, catalytic and structural <span style="font-variant: normal; font-style: norma...
متن کاملRelation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملIn silico Analysis and Molecular Modeling of RNA Polymerase, Sigma S (RpoS) Protein in Pseudomonas aeruginosa PAO1
Background: Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. The rpoS (RNA polymerase, sigma S) gene encodes sigma-38 (σ38, or RpoS), a 37.8 kDa protein in Pseudomonas aeruginosa (P. aeruginosa) strains. RpoS is a central regulator of the general stress response and operates in both retroa...
متن کاملMulti-Objective Genetic Algorithm for Pseudoknotted RNA Sequence Design
RNA inverse folding is a computational technology for designing RNA sequences which fold into a user-specified secondary structure. Although pseudoknots are functionally important motifs in RNA structures, less reports concerning the inverse folding of pseudoknotted RNAs have been done compared to those for pseudoknot-free RNA design. In this paper, we present a new version of our multi-objecti...
متن کاملPERFORMANCE BASED OPTIMAL SEISMIC DESIGN OF RC SHEAR WALLS INCORPORATING SOIL–STRUCTURE INTERACTION USING CSS ALGORITHM
In this article optimal design of shear walls is performed under seismic loading. For practical aims, a database of special shear walls is created. Special shear walls are used for seismic design optimization employing the charged system search algorithm as an optimizer. Constraints consist of design and performance limitations. Nonlinear behavior of the shear wall is taken into account and per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 336 3 شماره
صفحات -
تاریخ انتشار 2004